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2 Graphs

2.1 Directed Graphs

Both in Computer Science and in the rest of Mathematics graphs are studied and
used frequently. Graphs come in two flavors, directed graphs and undirected graphs.

There is no fundamental difference between directed graphs and relations: a
directed graph just is an endorelation on a given set. If V – for Vertexes – is this
set and if E – for Edges – is the relation we call the pair (V,E) a directed graph.
Usually, set V will be finite, but this is not really necessary: infinite graphs are
conceivable too. A directed graph (V,E) is finite if and only if V is finite. Unless
stated otherwise, we confine our attention to finite graphs. Always set V will be
nonempty .

Traditionally, the elements of set V are called “vertexes” or “nodes”, whereas
the elements of E , that is, the pairs (u, v) satisfying uE v , are called “directed
edges” or “arrows”. In this terminology we say that the graph contains “an arrow
from u to v ” if and only if uE v . Also, in this case, we say that u is a “predecessor”
of v and that v is a “successor” of u .

Graphs can be represented by pictures, in the following way. Every vertex is
drawn as a small circle with its name inside the circle, and every arrow from u to v
is drawn as an arrow from u ’s circle to v ’s circle. Such a picture may be attractive
because it enables us to comprehend, in a single glance, the whole structure of a
graph, but, of course, drawing such pictures is only feasible if the set of vertexes is
not too large. Figures 1 and 2 give simple examples.
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Figure 1: The smallest directed graphs: V = {a} with E = ø and E = { (a, a) }

a b

cd

Figure 2: The graph of relation { (a, b) , (b, c) , (c, d) , (d, a) }

If we are only interested in the pattern of the arrows we may omit the names of
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the vertexes and simply draw the vertexes as dots. The resulting picture is called an
“unlabeled” (picture of the) graph.

Figure 3: The same graph, unlabeled

Relation E may be such that uE u , for some u . In terms of graphs this means
that a vertex may have an arrow from itself to itself. This is perfectly admissible,
although in some applications such “auto-arrows” may be undesirable. Notice that
the property “having no auto-arrows” is the directed-graph equivalent of the relational
property “being irreflexive”.

Figure 4: The unlabeled graph of relation { (a, a) , (a, b) , (b, b) , (b, c) , (c, d) , (d, a) }

2.2 Undirected Graphs

Sometimes we are only interested in the (symmetric) concept of nodes being con-
nected, independent of any notion of direction. An “undirected graph” is a symmet-
ric (endo)relation E on a set V . As before, we call the elements of V “nodes” or
“vertexes”. The pairs (u, v) satisfying uE v are now called “edges”; we also say
that such u and v are “directly connected” or “neighbors”.

Relation E being symmetric means that uE v is equivalent to vE u ; hence,
being neighbors is a symmetric notion: edge (u, v) is the same as edge (v, u) . In
this view an undirected graph just is a special case of a directed graph, with this
characteristic property: the graph contains an arrow from u to v if and only if the
graph contains an arrow from v to u . So, arrows occur in pairs. See Figure 5, for
a simple example. A more concise rendering of an undirected graph is obtained by
combining every such pair of arrows into a single, undirected edge, as in Figure 6.



29

a b

cd

Figure 5: The graph of { (a, b) , (b, a) , (b, c) , (c, b) , (c, d) , (d, c) , (d, a) , (a, d) }

Figure 6: The same graph, with undirected edges and unlabeled

There is no fundamental reason why undirected graphs might not also contain
edges connecting a node to itself. Such edges are called “auto loops”. That is, if uEu
then u is directly connected to itself, so u is a neighbor to itself.1 It so happens,
however, that in undirected graphs auto-loops are more a nuisance than useful: many
properties and theorems obtain a more pleasant form in the absence of auto-loops.

Therefore, we adopt the convention that undirected graphs contain no auto-
loops. Formally, this means that an undirected graph is an irreflexive and symmetric
relation.

In the case of finite graphs we sometimes wish to count the number of arrows or
edges. We adopt the convention that, in an undirected graph, every pair of directly
connected nodes counts as a single edge, even though this single edge corresponds to
two arrows in the corresponding undirected graph. This reflects the fact that, in a
symmetric relation, the pairs (u, v) and (v, u) are indistinguishable. For example,
according to this convention, the undirected graph in Figure 6 has four edges.

* * *

We have defined an undirected graph as an irreflexive and symmetric directed graph.
Every directed graph can be transformed into an undirected one, just by “ignoring the
directions of the arrows”. In terms of relations this amounts to taking the symmetric
closure of the relation and removal of the auto-arrows: in the undirected graph nodes
u and v are neighbors if and only if, in the directed graph, there is an arrow from

1This shows that we should not let ourselves be confused by the connotations of the everyday-life
word “neighbor”: here the word is used in a strictly technical meaning.
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u to v or from v to u (or both), provided u 6= v . For example, the directed graph
in Figure 4 can thus be transformed into the undirected graph in Figure 6.

2.3 A more compact notation for undirected graphs

We have defined an undirected graph as an irreflexive – no edge between a node
and itself – and symmetric relation. Although this is correct mathematically, it is
not very practical. For example, the set of edges of the graph in Figure 5 now is
{ (a, b) , (b, a) , (b, c) , (c, b) , (c, d) , (d, c) , (d, a) , (a, d) } , in which every edge occurs
twice: that nodes a and b , for instance, are connected is represented by the presence
of both (a, b) and (b, a) in the set of edges. Yet, we do wish to consider this connection
as a single undirected edge. It is awkward, then, to have to write down both (a, b)
and (b, a) to represent this single edge. We would rather not be forced to distinguish
these pairs.

We obtain a more convenient representation by using by two-element2 sets {u, v } :
as set {u, v } equals set {v, u} we only need to write this down once. So, in the
sequel, an undirected graph will be a pair (V,E) , where V is the set of nodes, as
usual, and where E is a set of pairs {u, v } , with u, v ∈V and u 6= v , and such that:

{u, v } ∈E ⇔ “u and v are connected” .

For example, the set of edges of the graph in Figure 5 can now be written as:
{ {a, b} , {b, c} , {c, d} , {d, a} } .

In the number of edges, written as #E, we do not double count the edges in two
directions, so in this example we have #E = 4.

Although it is usual to write (., .) for ordered pairs, in which (a, b) 6= (b, a), and
in sets elements have no order by which {a, b} = {b, a}, in the literature one often
sees (a, b) to denote an edge in an undirected graph.

2.4 Additional notions and some properties

Occasionally, we use infix operators for the relations in directed and undirected graphs.
That is, sometimes we write uE v as u→v and we speak of directed graph (V,→ )
instead of (V,E) . Similarly, for symmetric relations we sometimes use u∼v instead
of uE v and we speak of undirected graph (V, ∼ ) . So, in this nomenclature, u→v
means “the graph has an arrow from u to v ” and u∼v means “in the graph u and
v are neighbors”.

In a directed graph (V,→ ) , for every node u the number of nodes v satisfying
u→v is called the “out-degree” of u , whereas the number of nodes u satisfying
u→v is called the “in-degree” of v , provided these numbers are finite. Notice that
if V is finite the in-degree and out-degree of every node are finite too. An auto-arrow
adds 1 , both to the in-degree and the out-degree of its node.

If relation → is symmetric, so u→v ⇔ v→u for all u, v , then the in-degree
of every node equals its out-degree.

2Undirected graphs contain no auto-edges, so the pair (u, u) is not an edge.
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In an undirected graph (V, ∼ ) , the “degree” of a node u is its number of
neighbors, that is, the number of nodes v with u∼v . Thus, the degree of a node
in an undirected graph equals the in-degree and the out-degree of that node in the
underlying directed graph.

We write in , out , and deg for “in-degree”, “out-degree”, and “degree” respec-
tively.

So for a directed graph (V,E) we have for u, v∈V :

in(v) = #{u ∈ V | (u, v) ∈ E }
out(u) = #{v ∈ V | (u, v) ∈ E }.

By straightforward addition we obtain:∑
v∈V in(v) = #E=

∑
u∈V out(u).

For an undirected graph (V,E) we have

deg(u) = #{v | {u, v} ∈ E }.

2.1 Theorem. In an undirected graph (V,E) we have

∑
v∈V

deg(v) = 2 ∗#E.

Proof. The number of ends of edges can be counted in two ways.
In the first one one observes that every edge has two ends, and since there are

#E edges, this number is 2 ∗ #E.
In the second one one observes that the degree of a node is the number of ends of

edges to which it is attached. Adding all these yields
∑

v∈V deg(v), so these numbers
are equal. �

* * *

With N for the size of V , so N equals the number of vertexes in the graph, we
have that the degree of every node is at most N−1 . If the degree of a node equals
N−1 then this node is a neighbor of all other nodes. If every node in an undi-
rected graph has this property, the graph is called “complete”. Similarly, a directed
graph is complete if it contains an arrow from every node to every node. Thus, the
complete directed graph corresponds to the complete relation > , whereas the com-
plete undirected graph corresponds to the relation >\I (because of the omission of
auto-loops). The complete undirected graph with N nodes is called the complete
N -graph. Figure 7, for example, gives a picture of the complete 5 -graph.
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Figure 7: The complete 5-graph, unlabeled

2.5 Connectivity

2.5.1 Paths

We simultaneously consider a directed graph (V,→ ) and an undirected graph (with
the same set of nodes) (V, ∼ ) . A directed path from node u to node v is a finite
sequence [ s0, · · · , sn ] consisting of n+1 , 0≤n , nodes satisfying:

u = s0 ∧ (∀i : 0≤i<n : si→si+1 ) ∧ sn = v .

Although this path contains n+1 nodes, it pertains to only n arrows, namely the
n pairs (si, si+1) , for all i : 0≤i<n . Therefore, we say that the length of this
path equals n : the length of a path is the number of arrows in it. If n= 0 the path
contains no arrows and we have u= v : the only paths of length 0 are the one-element
sequences [ u ] which are paths from u to u , for every node u . Paths of length 0
are called “empty” whereas paths of positive length are called “non-empty”.

Similarly, in an undirected graph an undirected path from node u to node v is
a finite sequence [ s0, · · · , sn ] consisting of n+1 , 0≤n , nodes satisfying:

u = s0 ∧ (∀i : 0≤i<n : si∼si+1 ) ∧ sn = v .

Again, the length of this path is n , being the number of edges in it.
Whenever no confusion is possible, we simply use “path” instead of “directed

path” or “undirected path”. In any, directed or undirected graph, we call nodes u
and v “connected” if the graph contains a path from u to v . Every node is connected
to itself, because we have seen that for every node u a path, of length 0 , exists from
u to u .

In relational terms being connected means being related by the reflexive-transitive
closure of the relation. In what follows, we denote the reflexive-transitive closures of
relations → and ∼ by ∗→ and ∗∼ , respectively, and we denote their transitive
closures by +→ and +∼ , respectively.
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2.2 Lemma. In a directed graph the relation “is connected to” equals ∗→ .
Proof. From the chapter on relations we recall the property R∗ = (

⋃
n:0≤nR

n ) ;
in terms of → this can be written as: ∗→ = (

⋃
n:0≤n

n→ ) , where n→ denotes the
equivalent of Rn . This means that u ∗→v is equivalent to (∃n : 0≤n : u n→v ) , whereas
“u is connected to v” is equivalent to
(∃n : 0≤n : “u is connected to v by a path of length n” ) . We now prove the equiv-
alence of these two characterizations term-wise; that is, for all natural n we prove
that u n→v is equivalent to “u is connected to v by a path of length n”. We do so by
Mathematical Induction on n :

u
0→v

⇔ { definition of 0→ }
u I v

⇔ { definition of I }
u = v

⇔ { definition of path }
“the path [u ], of length 0, connects u to v”

⇔ { definition of “connected”, see below }
“u is connected to v by a path of length 0” .

As to the logical equivalence in the last step of this derivation: in the direction “⇒ ”
this is just ∃ -introduction; in the direction “⇐ ” we observe: for every path [x ] , of
length 0 , we have that if [x ] connects u to v then x= u , hence [x ] = [u ] . (That
is, the path of length 0 connecting u to v is unique.)

Furthermore, we derive, for 0≤n and for nodes u,w :

u
n+1→ w

⇔ { definition of n+1→ }
(∃v :: u n→v ∧ v→w )

⇔ { Induction Hypothesis }
(∃v :: “u is connected to v by a path of length n” ∧ v→w )

⇔ { definition of connected }
(∃v :: (∃s : “s is a path of length n” : u= s0 ∧ sn = v ) ∧ v→w )

⇔ { ∧ over ∃ }
(∃v :: (∃s : “s is a path of length n” : u= s0 ∧ sn = v ∧ v→w ) )

⇔ { dummy unnesting }
(∃s, v : “s is a path of length n” : u= s0 ∧ sn = v ∧ v→w )

⇔ { if s is a path of length n then s++ [v, w ] is a path of length n+1 :
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dummy transformation }
(∃t : “t is a path of length n+1” : u= t0 ∧ tn+1 =w )

⇔ { definition of connected }
“u is connected to w by a path of length n+1 ” .

�

In a very similar way we can prove that the relation “is connected by a non-empty
path length” is equivalent to +→ . Moreover, the proof of the above lemma does not
depend on particular properties of the directed relation → : the lemma and its proof
also are valid for undirected graphs, provided, of course, we replace ∗→ and +→ by
∗∼ and +∼ respectively.

* * *

Note that being connected in an undirected graph is a symmetric relation: u is
connected to v if and only if v is connected to u , because [ s0, · · · , sn ] is a path
from u to v if and only if the reverse of s , that is, the sequence [ sn, · · · , s0 ] , is a
path from v to u .

In directed graphs, being connected is not necessarily symmetric, of course: the
existence of a directed path (usually) does not imply the existence of directed path in
the reverse direction.

2.5.2 Path concatenation

Let s be a directed path of length m from node u to node v , and let t be a directed
path of length n from node v to node w . So, the end point of s , which is v , equals
the starting point of t , that is, we have sm = t0 .

From s and t we can now construct a directed path, of length m+n , from
node u to node w ; this is called the “concatenation” of s and t , and we denote it
by s++ t . For s and t paths of length m and n , respectively, their concatenation
s++ t is a path of length m+n , defined as follows:

(s++ t)i = si , for 0≤ i≤m
(s++ t)m+i = ti , for 0≤ i≤n

Keep in mind that s++ t is defined only if sm = t0 , and this is implied by this
definition: on the one hand (s++ t)m = sm , on the other hand (s++ t)m = t0 . In
this case, s++ t is a path from u to w indeed. This we prove as follows:

(s++ t)0

= { definition of ++ }
s0

= { s is a path from u to v }
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u ,

as required; and, for 0≤ i<m :

(s++ t)i→ (s++ t)i+1

= { definition of ++ }
si→ si+1

= { s is a path of length m }
true

as required; and, for 0≤ i<n :

(s++ t)m+i→ (s++ t)m+i+1

= { definition of ++ }
ti→ ti+1

= { t is a path of length n }
true

as required; and, finally:

(s++ t)m+n

= { definition of ++ }
tn

= { t is a path from v to w }
w ,

as required.

Concatenation of undirected paths is defined in exactly the same way: here con-
catenation is actually an operation on sequences of nodes, and the difference between
→ and ∼ , that is, the difference between directed and undirected, only plays a role
in the interpretation of such sequences as paths.

We now conclude that, both in directed and in undirected graphs, if a path s ,
say, exists from node u to node v and if a path t , say, exists from node v to node
w , then also a path exists from node u to node v , namely s++ t . Thus we have
proved the following lemma.

2.3 Lemma. Both in directed and in undirected graphs, the relation “is connected to”
is transitive.
2

2.5.3 The triangular inequality

Every path in a graph has a length, which is a natural number. Every non-empty
set of natural numbers has a smallest element. Therefore, if node u is connected to
node v we can speak of the minimum of the lengths of all paths from u to v . This
we call the “distance” from u to v . Because, in undirected graphs, connectedness is
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symmetric, we have, in undirected graphs, that the distance from u to v is equal to
the distance from v to u .

If u is not connected to v we define, for the sake of convenience, the distance
from u to v to be ∞ (“infinity”), because ∞ can be considered, more or less, as the
identity element of the minimum-operator. Note, however, that ∞ is not a natural
number and that we must be very careful when attributing algebraic properties to
it. For example, it is viable to define ∞+n = ∞ , for every natural n , and even
∞+∞ = ∞ , but ∞−∞ cannot be defined in a meaningful way. An important
property is:

(0) n <∞ , for all n ∈ Nat ;

(1) n ≤∞ , for all n ∈ Nat∪{∞} .

We denote the distance from u to v by dist(u, v) . Then, function dist is defined
as follows, for all nodes u, v :

dist(u, v) = ∞ , if u is not connected to v ;

dist(u, v) = (minn : 0≤n ∧ “a path of length n exists from u to v” : n ) ,
if u is connected to v .

Function dist now satisfies what is known in Mathematics as the “triangular inequal-
ity”. This lemma holds for both directed and undirected graphs.

2.4 Lemma. All nodes u, v, w satisfy: dist(u,w) ≤ dist(u, v) + dist(v, w) .

Proof. By (unavoidable) case analysis. If dist(u, v) =∞ or dist(v, w) =∞ then also
dist(u, v) + dist(v, w) = ∞ ; now, by property (1) , we have dist(u,w) ≤∞ , so we
conclude, for this case: dist(u,w) ≤ dist(u, v) + dist(v, w) , as required.

Remains the case dist(u, v) <∞ and dist(v, w) <∞ . In this case, paths exist
from u to v and from v to w . Let s be a path, of length m , from u to v and
let t be a path, of length n , from v to w . Then, as we have seen in the previous
subsection, s++ t is a path, of length m+n , from u to w . By the definition of dist ,
we conclude: dist(u,w) ≤ m+n . As this inequality is true for all such paths s and
t , it is true for paths of minimal length as well. Hence, also for this case we have:
dist(u,w) ≤ dist(u, v) + dist(v, w) , as required.

�

2.5.4 Connected components

A directed graph (V,→ ) is strongly connected if every node is connected to every
node, that is, if there is a directed path from every node u to every node v . In
relational terms, this means that ∗→ = > . The adverb “strongly” stresses the fact
that, in directed graphs, strong connectedness is a symmetric notion: for every two
nodes u, v there is a path from u to v and there is path from v to u .
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An undirected graph is connected if every pair of nodes is connected by a path.
Relationally, a graph is connected if and only if ∗∼ = > . As we have seen, in undi-
rected graphs connectedness is symmetric. It even is an equivalence relation. A
connected component is a maximal subset of the nodes of the graph that is connected:
the connected components of an undirected graph are the equivalence classes of ∗∼ .

Figure 8: An undirected graph with 3 connected components

2.6 Cycles

A cycle in a graph is a non-trivial path from a node to itself. For undirected graphs a
proper definition of ‘non-trivial’ needs some care. Generally, a graph may contain few
cycles, many cycles, or no cycles at all. In the latter case the graph is called acyclic.

2.6.1 Directed cycles

In a directed graph a cycle is a (directed) path from a node to itself. For example, if
a→b and b→a then the path [ a , b , a ] is a cycle, and so is the path [ b , a , b ] .
Although these are different paths they constitute, in a way, the same cycle. The
simplest possible case of a directed cycle is [ a , a ] , namely if a→a .

a b

Figure 9: A simple directed cycle

a

Figure 10: An even simpler cycle
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2.6.2 Undirected cycles

In undirected graphs the notion of cycles is somewhat more complicated. For example,
if, in undirected graph (V, ∼ ) , we have a∼b and, hence, also b∼a , then [ a , b , a ]
is a path from node a to itself. Yet, we do not wish to consider this a cycle. More
generally, we do not wish the pattern [ · · · , a , b , a , · · · ] to occur anywhere in a
cycle: in a cycle, every next edge should be different from its predecessor. As a
consequence, in an undirected graph the smallest possible cycle involves at least three
nodes and three edges. Some texts require even stronger conditions for a path to be
a cycle, for instance, that no node occurs more than once. We choose for the weakest
version only excluding directly going back.

These considerations give rise to the following definition. An undirected cycle is
a path [ s0, · · · , sn ] , of length n , with the following additional properties:

3≤n

s0 = sn

(∀i : 0≤i≤n−2 : si 6= si+2 ) ∧ sn−1 6= s1

The first of these conditions expresses that a cycle comprises at least 3 nodes, the
second condition expresses that the path’s last node equals its first node – thus “closing
the cycle” – , and the last condition precludes that every two successive edges in the
cycle are different. The conjunct sn−1 6= s1 really is needed here: the “last” edge,
{sn−1, sn } , which is the same as {sn−1, s0 } , and the “first” edge, {s0, s1 } , are
successive too, which must be different as well.

In Figure 14, for example, we have that [ a, b, d, b, c, a ] is not a cycle, because it
contains edge {b, d} twice in succession. Without the conjunct sn−1 6= s1 , however,
the path [ d, b, c, a, b, d ] would be a cycle, which is undesirable: whether or not a
certain collection of nodes constitutes a cycle should not depend on which node is the
first node of the path representing that cycle.

a b c

Figure 11: No cycles at all

a b

Figure 12: Not even an (undirected) graph
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Figure 13: The smallest undirected cycle

a b

c

d e

f

Figure 14: [ a, b, d, e, f, d, b, c, a ] is a cycle, [ a, b, d, b, c, a ] is not

Thus we obtain the following lemma, which expresses that cycles are “invariant
under rotation”. This lemma is useful because it allows us to let any node in a cycle
be the starting node of the path representing that cycle.

2.5 Lemma. [Rotation Lemma] For every natural n , 3≤n , a path [ s0, s1, · · · , sn−1, s0 ]
is a cycle if and only if the path [ s1, · · · , sn−1, s0, s1 ] is a cycle.
2

2.7 Euler and Hamilton cycles

2.7.1 Euler cycles

In a undirected graph a cycle with the property that it contains every edge of the
graph exactly once is called an Euler cycle.

2.6 Theorem. For every connected graph (V, ∼ ) :

“ (V, ∼ ) contains an Euler cycle” ⇔ (∀v : v∈V : “deg(v) is even”) .

Proof. By mutual implication.

“⇒ ”: We consider an Euler cycle in graph (V, ∼ ) . Let v be a node. Wherever v
occurs in the Euler cycle v has a predecessor u , say, in the cycle and a successor
w , say, in the cycle. This means that u, v, w are all different and u∼ v and v ∼w .
Thus, all edges associated with v occurring in the Euler cycle occur in pairs; hence,
the total number of edges associated with v occurring in the Euler cycle is even.
Because the cycle is an Euler cycle all of v ’s edges occur in the Euler cycle; hence,
deg(v) is even.
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“⇐ ”: Assuming (∀v : v∈V : “deg(v) is even”) we prove the existence of an Euler
cycle by sketching an algorithm for the construction of an Euler cycle. This algorithm
consists of two phases. In the first phase a collection of (one or more) cycles is formed
such that every edge of the graph occurs exactly once in exactly one of these cycles.
In the second phase, the cycles in this collection are combined into larger cycles, thus
reducing the number of cycles in the collection while retaining the property that every
edge of the graph occurs exactly once in exactly one of the cycles in the collection.
As soon as this collection contains only one cycle, this one cycle is a Euler cycle.

first phase: Initially all edges are white. The property (∀v : v∈V : “deg(v) is even”)
will remain valid for the subgraph formed by V and the white edges only: it is an
invariant of this phase. Another invariant is that all red edges form a collection of
cycles with the property that every red edge of the graph occurs exactly once in exactly
one of these cycles. Initially this is true because there are no red edges: initially the
collection of red cycles is empty. If, on the other hand, all edges are red the collection
of red cycles comprises all edges of the graph, and the first phase terminates. As long
as the graph contains at least one white edge, the following step is executed.

Select a white edge, {s0, s1 } , say. Because deg(s1) is even, node s1 has a
neighbor s2 , say, that differs from s0 and such that edge {s1, s2 } is white as well.
Repeating this indefinitely yields an infinite sequence si :0≤i of nodes, pairwise con-
nected by white edges. As the graph is finite, this sequence contains a sub-path
[ sp, · · · , sq ] , for some p, q with 0≤ p< q , that is a cycle, comprising white edges
only. Now all white edges in this cycle are turned red. Because, for every node in this
cycle, its associated edges occur in pairs, the number of white edges associated with
any node in this cycle is even and, as a result, the degree of all nodes remains even
under reddening of the white edges in this cycle. This process is repeated as long
as white edges exist. Because in a undirected graph every cycle contains at least 3
edges the number of white edges thus decreases (by at least 3 ), this first phase will
not go on forever, and will end in a situation where no white edges exist any more.

second phase: The second phase terminates if the collection of red cycles contains only
one cycle. As long as this collection contains at least two cycles it takes two cycles
that have a node in common. This is always possible due to the assumption that the
graph is connected: if for a cycle all nodes are on none of the other cycles, this cycle
is isolated and does not admit a path to any node on the other cycles, contradicting
connectedness. Now these two cycles with a node v in common can be joined to a
single cycle: if the one cycle is a path s from v to v and the other cycle is a path t
from v to v, then the concatenation of s and t is a cycle covering both original cycles.
It satisfies the cycle condition since s and t are disjoint. In this way the total number
of cycles decreases, while still every edge of the original graph occurs exactly once as
an edge of one of the cycles. This process is repeated until only one cycle remains
and all cycles have been glued together; by construction this cycle is an Euler cycle.
�
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2.7.2 Hamilton cycles

In a (directed or undirected) graph a cycle with the property that it contains every
node of the graph exactly once is called a Hamilton cycle.

A naive algorithm to compute whether a given graph contains a Hamilton cycle
is conceptually simple: enumerate all cycles and check whether any of them is a
Hamilton cycle. This naive algorithm is quite inefficient, of course, but really efficient
algorithms are not (yet) known: the problem to decide whether a graph contains a
Hamilton cycle is NP-hard , which in practice means that all algorithms will require
an amount of computation time that grows exponentially with the size of the graph.

Notice the contrast in complexity between the notion of Euler and Hamilton
cycles. On the one hand, Theorem 2.6 provides a simple algorithm to evaluate the
existence of an Euler cycle – just calculate the degrees of the nodes – , and its proof
contains a relatively straightforward algorithm for the construction of an Euler cy-
cle. On the other hand, calculating the existence of an Hamilton cycle, let alone
construction of one, is NP-hard.

Thus, two seemingly similar notions – Euler cycles and Hamilton cycles – happen
to have essentially different properties.

2.7.3 A theorem on Hamilton cycles

We consider finite, undirected graphs, with at least 4 nodes. We present a theorem
giving a sufficient condition for the existence of Hamilton cycles, namely if the graph
contains “sufficiently many” edges. In our case the notion of “sufficiently many” and
the theorem take the following shape.

2.7 Theorem. We consider an undirected graph with n nodes, 4≤n . If, for every two
unconnected nodes, the sum of their degrees is at least n , then the graph contains a
Hamilton cycle.
2

To formalize this, let V be a (fixed) set of nodes, with n = #V , 4≤n . In what
follows variables u, v, p, q range over V , with p 6= q . The set E of edges is variable;
that is, as a function of E we define predicates P and H , as follows:

P (E) = (∀u, v : u 6= v : {u, v } 6∈E ⇒ deg(u) + deg(v) ≥ n ) , and:

H(E) = “graph (V,E) contains a Hamilton cycle ” .

Predicate P formalizes our particular version of “sufficiently many”: P expresses
that, for every two unconnected nodes, the sum of their degrees is at least n .

Both P and H are monotonic, as follows:

monotonicity: For all E and for any two nodes p, q :
P (E) ⇒ P (E ∪ {{p, q }}) , and:

H(E) ⇒ H (E ∪ {{p, q }}) .
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2

In addition, for the extreme cases, the empty graph ⊥ and the complete graph > ,
we have:

¬ (P (⊥)) ∧ ¬ (H(⊥)) ∧ P (>) ∧ H(>) .

The theorem now states that every graph satisfying predicate P contains at least one
Hamilton cycle.

2.8 Theorem. (∀E :: P (E) ⇒ H(E) ) .
2

We present two proofs for this theorem. These proofs are essentially the same, but
they differ in their formulation. The crucial part in both proofs is the following:

Core Property: For set E of edges and for any two nodes p, q with ¬ ({p, q }∈E) :

P (E) ∧ H (E ∪ {{p, q }}) ⇒ H(E) .
2

Notice that the Core Property also holds if {p, q }∈E , but in a trivial way only: then
H (E ∪ {{p, q }}) = H(E) , so in this case the property is void.

We will present a proof for the Core Property later, but first we will show how
it is used in the proofs of the Theorem.

2.7.4 A proof by contradiction

The first proof runs as follows, by contradiction. That is, we suppose that the Theorem
is false. Then, there exists a set F of edges such that P (F ) and ¬ (H(F )) . Because
¬ (H(F )) and H(>) , and because F ⊆> , there also exists a “turning point”, that
is, a set E of edges and a pair p, q of nodes such that:

F ⊆E ∧ ¬ (H(E)) ∧ H (E ∪ {{p, q }}) .

Notice that, because of ¬ (H(E)) ∧ H (E ∪ {{p, q }}) , we have – Leibniz! – that
E 6= E ∪ {{p, q }} , hence {p, q } 6∈E .

Because of the monotonicity of P , and because P (F ) and F ⊆E , set E satisfies
P (E) too. Now, from P (E) and H (E ∪ {{p, q }}) we conclude, using the Core
Property, H(E) . In conjunction with the assumed ¬ (H(E)) we obtain the desired
contradiction.

2.7.5 A more explicit proof

The reasoning in the previous proof is somewhat strange: the assumption ¬ (H(E))
is not really used in the proof proper: it is only used to conclude a contradiction.
Therefore, we should be able to construct a more direct proof. In addition what does
“there exists a ‘turning point’ ” really mean, mathematically speaking?
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Because of the monotonicity of P we have P (E) ⇒ P (E ∪ {{p, q }}) ; therefore,
by means of elementary propositional calculus, the Core Property can be rewritten
thus:

(2) (P (E ∪ {{p, q }}) ⇒ H (E ∪ {{p, q }}) ) ⇒ (P (E) ⇒ H(E) ) ,

and this smells very strongly of a proof by Mathematical Induction. As a matter of
fact, this is Mathematical Induction, albeit in a somewhat unusual direction, namely
from larger towards smaller.

Firstly, we have H(>) – the complete graph contains a Hamilton cycle, very
many even – , so we also have P (>) ⇒ H(>) . This is the basis of the induction.

Secondly, property (2) now represents the induction step. Because every set E
of edges can be obtained from a larger set E ∪ {{p, q }} , with {p, q } 6∈E , we are
done.

Notice that the fact that the collection of all possibles sets of edges is finite3 is of
no consequence: although usually applied to infinite sets the principle of Mathematical
Induction is perfectly valid in a finite setting.

2.7.6 Proof of the Core Property

We repeat the Core Property, which is the essential part of both proofs of the Theorem.

Core Property: For set E of edges and for any two nodes p, q with {p, q } 6∈E :

P (E) ∧ H (E ∪ {{p, q }}) ⇒ H(E) .
2

To prove this we assume that E is a set of edges and p, q are different nodes, such
that {p, q } 6∈E , satisfying P (E) and H (E ∪ {{p, q }}) . The latter means that the
graph (V , E ∪ {{p, q }} ) contains a Hamilton cycle. If such a Hamilton cycle does
not contain edge {p, q } , then it also is a Hamilton cycle in the graph (V,E) ; hence,
P (E) and in this case we are done.

So, remains the case that (V , E ∪ {{p, q }} ) contains a Hamilton cycle that
does contain edge {p, q } . Now we have to prove P (E) , that is, we must prove that
(V,E) contains a Hamilton cycle as well, that is, without edge {p, q } .

For this purpose, let [ s0, s1, · · · , sn ] be a Hamilton cycle in (V , E ∪ {{p, q }} ) .
This means that {si | 0≤i<n} = V – recall that n = #V – , that sn = s0 , and that
(∀i : 0≤i<n : {si, si+1 }∈E ∪{{p, q }} ) . We assume that this cycle contains edge
{p, q } and, without loss of generality, we assume that s0 = p and s1 = q .
In this setting we prove that (V,E) contains a Hamilton cycle. To construct a
Hamilton cycle not containing edge {p, q } we take the Hamilton cycle introduced
above, containing edge {p, q } , as a starting point. Removal of edge {p, q } destroys
the cycle, and what remains is a path connecting s1 , that is q , to s0 , that is p , that
still contains all nodes of the graph and all edges of which are in E .

3for our fixed , finite set of nodes



44

s0 = p s1 = q

s2

shsh+1

sn−1

Figure 15: a Hamilton cycle, with edge {p, q }

s0 = p s1 = q

s2

shsh+1

sn−1

Figure 16: The remains of the cycle, after removal of edge {p, q }
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Now we must restore the cycle by somehow reconnecting p and q , using edges in
E only. We do so by selecting an index h in the interval [ 2 . . n−1 ) such that both
{p, sh }∈E and {q, sh+1 }∈E . To show that this is possible we need the theorem’s
assumption P (E) , which was defined as:

(∀u, v : u 6= v : {u, v } 6∈E ⇒ deg(u) + deg(v) ≥ n ) .

Applying this to p, q and using {p, q } 6∈E we obtain:

(3) deg(p) + deg(q) ≥ n .

Let x = #{ i∈ [ 2 . . n−1 ) | {p, si }∈E } and let y = #{j ∈ [ 2 . . n−1 ) | {q, sj+1 }∈E } ;
now we calculate:

deg(p) + deg(q) ≥ n

⇔ { definition of deg (twice), using s0 = p and s1 = q }
#{ i∈ [ 1 . . n ) | {s0, si }∈E } + #{j ∈ [ 2 , n ] | {s1, sj }∈E } ≥ n

⇔ { split off i= 1 and i=n−1 , using {s0, s1 } 6∈E and {sn−1, sn }∈E }
1 + #{ i∈ [ 2 . . n−1 ) | {s0, si }∈E } + #{j ∈ [ 2 , n ] | {s1, sj }∈E } ≥ n

⇔ { split off j = 2 and j =n , using {s1, s2 }∈E and {s1, sn } 6∈E }
1 + #{ i∈ [ 2 . . n−1 ) | {s0, si }∈E } + 1 + #{j ∈ [ 3 . . n ) | {s1, sj }∈E } ≥ n

⇔ { dummy transformation j := j+1 }
1 + #{ i∈ [ 2 . . n−1 ) | {s0, si }∈E } + 1 + #{j ∈ [ 2 . . n−1 ) | {s1, sj+1 }∈E } ≥ n

⇔ { definitions of x and y , using s0 = p and s1 = q }
1 + x + 1 + y ≥ n

⇔ { calculus }
x + y ≥ n− 2 .

So, the number of indexes i in the interval [ 2 . . n−1 ) for which {p, si }∈E plus
the number of indexes i in the range [ 2 . . n−1 ) for which {q, si+1 }∈E is at least
n− 2 . The size of the interval [ 2 . . n−1 ) , however, only is n− 3 ; hence the two sets
of indexes have a non-empty intersection: there exists an index h , h∈ [ 2 . . n−1 ) ,
such that both {p, sh }∈E and {q, sh+1 }∈E .

For every such an index h , [ s0, sh, · · · , s2, s1, sh+1, · · · , sn−1, sn ] is a Hamilton
cycle in the graph (V,E) . Because we have shown the existence of such an h , we
conclude the existence of a Hamilton cycle in (V,E) , which was our goal.

remark: The existence of an index h in the interval [ 2 . . n−1 ) implies that
this interval is nonempty, that is, 2 <n−1 , which boils down to 4≤n .
Hence, the proofs of the Theorem presented here are only valid for graphs
with at least 4 nodes. It can be easily verified that the Theorem also holds
for n= 3 : the complete 3 -graph – a “triangle” – is the only one satisfying
predicate P , and a “triangle” is a Hamilton cycle. For n< 3 the Theorem
does not hold.
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2

s0 = p s1 = q

s2

shsh+1

sn−1

Figure 17: a Hamilton cycle, without edge {p, q }

2.8 Ramsey’s theorem

2.8.1 Introduction

We are having a party at which every two guests either do know each other or do
not know each other. If the number of guests at the party is “large enough” then the
party has at least 5 guests all of which either do know one another or do not know
one another. How large must the party be for this to be true?

F.P. Ramsey has developed some theory for the treatment of problems like this.
This theory makes it possible to draw rather global conclusions about undirected
graphs, independently of their actual structure.

To illustrate this we present a simple theorem that represents his work. In the
above example the guests at the party can be considered the nodes of an undirected
graph. Any two nodes are connected by an edge if and only if the two corresponding
guests do know each other. A set of 5 guests all of which do know one another then
amounts to a subgraph of size 5 that is complete, that is, we say that the whole graph
contains a complete 5-graph. How do we formulate, on the other hand, that from a
set of 5 guests every two guests do not know each other? Well, this means that the
whole graph contains 5 nodes every two of which are not connected.

We might as well, however, consider the complement graph, in which two nodes
are connected by an edge if and only if the two corresponding guests do not know
each other. As a matter of fact, the problem as stated is symmetric in the notions
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of “knowing each other” and “not knowing each other”. It is, therefore, awkward
to destroy this symmetry by representing the one concept by the presence of edges
and the other concept by their absence. Moreover, we have two possibilities here, the
choice between which is irrelevant.

To restore the symmetry we, therefore, consider a complete undirected graph, of
which the set of edges has been partitioned into two subsets – or more than two, in
the more general case of Ramsey’s theory – . The one subset then represents the pairs
of guests who know each other and the other subset represents the pairs of guests
who do not know each other.

Partitioning a set into (disjoint) subsets can be represented conveniently by col-
oring . In our case, partitioning the edges of a complete graph into two subsets can be
represented by coloring each edge with one out of two colors. (And, of course, with
more than two colors we can represent partitionings into more than two subsets.)
Now, an edge of the one color may represent a pair of guests who do know each other,
whereas an edge of the other color may represent a pair of guests who do not know
each other. Thus, the symmetry between “knowing” and “not knowing” is restored.

2.8.2 Ramsey’s theorem

We consider finite, complete, undirected graphs only. For the sake of brevity, we will
use “k -graph” for the “complete k-graph”, for any natural k , 2≤ k . Formally, a
coloring of a graph’s edges is a function from the set of edges to the set of colors
used, { red , blue} , say, if two colors are sufficient. So, a coloring is a function of type
E→{ red , blue} , and if c is such a coloring, then for any edge {u, v } we have either
c({u, v }) = red or c({u, v }) = blue , but not both simultaneously, as we presume
that red 6= blue : every edge has only one color. In what follows we use variables c
and d to denote colorings.

Again for brevity’s sake, we say that the k -graph “contains a red m-graph” if
the nodes of the k -graph contain a subset of m nodes such that all edges connecting
these nodes are red; that is, these m nodes together with their edges constitute a
completely red m-graph as a subgraph of the k -graph, for any k,m with 2≤m≤ k .

As an example, notice that the 2-graph has two nodes only, connected by one
single edge; hence, the proposition “the k -graph contains a red 2-graph” is equivalent
to the proposition “the k -graph contains at least one red edge”.

The proposition “the k -graph contains a red m-graph” depends on the parame-
ters k and m , of course, but also on the actual coloring. So, it is a predicate with
three parameters. Calling this predicate Rd , we define it as follows, together with a
similar predicate Bl , for the color blue, for all k, c,m with 2≤m≤ k :

Rd (k, c,m) ⇔ “the k -graph with coloring c contains a red m-graph” , and:

Bl (k, c,m) ⇔ “the k -graph with coloring c contains a blue m-graph” .

These predicates are monotonic, in the following way. Suppose Rd (k, c,m) , for some
k, c,m . Then we also have Rd (k+1 , c ,m) , provided we consider the coloring of the
(k+1)-graph as an extension of the coloring of the k -graph – both colorings being
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denoted here by the very same c – , just as the (k+1)-graph can be viewed as an
extension of the k -graph. For this purpose we consider the k+1 nodes of the (k+1)-
graph as a set of k nodes, forming a k -graph, plus one additional node, which may
remain anonymous. Every coloring of the (k+1)-graph thus induces a coloring of the
k -graph; as stated, function c denotes either coloring.

Ramsey’s theorem now is about a function R , say, defined as follows, for all
m,n with 2≤m and 2≤m :

R(m,n) = “the smallest of all natural numbers k satisfying:
(∀c :: Rd (k, c,m) ∨ Bl (k, c, n) ) ” .

The function value R(m,n) is only well-defined, of course, if at least one natural
number k exists satisfying (∀c :: Rd (k, c,m) ∨ Bl (k, c, n) ) : only then we can speak
of the smallest such number. Notice that, by definition, if R(m,n) = p then for
every k , p≤ k , the k -graph contains at least one red m-graph or contains at least
one blue n-graph (or both).

The following theorem states that such natural numbers exist and provides an
upper bound for R(m,n) .

2.9 Theorem. (Ramsey)

R(m,n) ≤
(
m+n−2
m−1

)
, for all m,n : 2≤m ∧ 2≤n .

2

Notice that, by definition, R(m,n) is symmetric in m and n , that is, we have:
R(m,n) = R(n,m) , because for every coloring c satisfying Rd (k, c,m) ∨ Bl (k, c, n)
a coloring d exists – which one? – satisfying Rd (k, d, n) ∨ Bl (k, d,m) . The expres-

sion
(
m+n−2
m−1

)
does not look symmetric, at least, not at first sight. Yet, it is,

because binomial coefficients satisfy the following, general property:(
m+n
m

)
=

(
m+n
n

)
, for all m,n : 1≤m ∧ 1≤n ,

as a result of which we also have:
(
m+n−2
m−1

)
=

(
m+n−2
n−1

)
.

Proof of the Theorem: By Mathematical Induction on the value of m+n ;
that is, the Induction Hypothesis is:

R(p, q) ≤
(
p+q−2
p−1

)
, for all p, q : 2≤ p ∧ 2≤ q ∧ p+q<m+n .
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We distinguish 3 cases.

Firstly, 2≤m ∧ n= 2 : We consider the m-graph. Let c be the color-
ing in which all edges of the m-graph are red, so this particular c yields
Rd (m, c,m) . For every other coloring c we have that not all edges of the m-
graph are red, so the m-graph contains at least one blue edge, which means
Bl (m, c, 2) , for all other c . Combining these cases we obtain (∀c :: Rd (m, c,m) ∨ Bl (m, c, 2) ) ,
from which we conclude that R(m,n) ≤m . (Actually, we have R(m,n) = m
because no smaller graph contains a red m-graph, but the upper bound is all

we need.) Now m =

(
m+2−2
m−1

)
, so we conclude R(m,n) ≤

(
m+2−2
m−1

)
,

as required.

Secondly, m= 2 ∧ 2≤n : By symmetry with the previous case.

Thirdly, 3≤m ∧ 3≤n : We need an additional property, to be proved later;
the need of this property is inspired by a well-known property of binomial
coefficients:

R(m,n)

≤ { • property of R , see below, using 3≤m ∧ 3≤n }
R(m−1 , n) +R(m,n−1)

≤ { Induction Hypothesis (twice) }(
m+n−3
m−2

)
+

(
m+n−3
m−1

)
= { property of binomial coefficients }(

m+n−2
m−1

)
.

2

In the above proof of the Theorem we have used the following property of R , which
constitutes the core of the proof.

property: R(m,n) ≤ R(m−1 , n) +R(m,n−1) , for all m,n : 3≤m ∧ 3≤n .

proof: Let k = R(m−1 , n) +R(m,n−1) . To prove that R(m,n) ≤ k it
suffices to prove Rd (k, c,m) ∨ Bl (k, c, n) , for all colorings c . Therefore,
let c be a coloring of the k -graph. Let v be a node of the k -graph and in
what follows dummy u also ranges over the nodes of the k -graph. We define
subsets X and Y of the nodes, as follows:

X = {u∈V | u 6= v ∧ c({u, v }) = red } , and:

Y = {u∈V | u 6= v ∧ c({u, v }) = blue } .
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Then X and Y and {v } partition the nodes of the k -graph, so we have:

#X + #Y + 1 = R(m−1 , n) +R(m,n−1) .

From this it can be derived that R(m−1 , n) ≤ #X ∨ R(m,n−1) ≤ #Y ,
by contraposition:

#X < R(m−1 , n) ∧ #Y < R(m,n−1)

⇔ { all values here are integers }
#X ≤ R(m−1 , n)−1 ∧ #Y ≤ R(m,n−1)−1

⇒ { monotonicity of addition }
#X+#Y ≤ R(m−1 , n) +R(m,n−1) − 2

⇔ { all values here are integers }
#X+#Y +1 < R(m−1 , n) +R(m,n−1)

⇒ { < is irreflexive }
#X+#Y +1 6= R(m−1 , n) +R(m,n−1) ,

which settles the issue.
We now prove the required property, Rd (k, c,m) ∨ Bl (k, c, n) , by dis-

tinguishing the two cases of this disjunction.

Case R(m−1 , n) ≤ #X : From the definition of R we conclude, for our col-
oring c , that either Rd (#X, c ,m−1) or Bl (#X, c , n) . If Rd (#X, c ,m−1)
then X contains a red (m−1)-graph. By definition of X , we also have
c({u, v }) = red , for all u∈X ; hence, X ∪{v } contains a red m-graph,
which implies Rd (k, c,m) as well. If, on the other hand, Bl (#X, c , n) then
we also have Bl (k, c, n) . In both cases we have Rd (k, c,m) ∨ Bl (k, c, n) ,
which concludes this case.

Case R(m,n−1) ≤ #Y : By symmetry.
2

2.8.3 A few applications

A party containing 5 guests all knowing one another or all not knowing one another
can now represented as a complete graph containing a red 5 -graph or a blue 5 -graph.
So, asking for the smallest such party is asking for the value of R(5, 5) . As upper

bound for R(5, 5) , Ramsey’s theorem now gives
(

8
4

)
, which equals 70 . Further

investigation of this problem has revealed that R(5, 5) ∈ [ 43 , 49 ] ; what is the actual
value of R(5,5) still is an open problem!

* * *
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The smallest complete graph containing, independently of the coloring, at least one
monochrome triangle is the complete 6 -graph. Ramsey’s theorem yields R(3, 3) ≤ 6 .
For the complete 5 -graph a coloring exists such that the graph does not contain a
monochrome triangle; hence, R(3, 3) ≥ 6 . So, R(3, 3) = 6 .

2.9 Trees

2.9.1 Undirected trees

An (undirected) tree is an undirected graph that is connected and acyclic. As we will
see, on the one hand trees are the smallest connected graphs: removal of an edge
from a tree always results in a graph that is not connected anymore. On the other
hand, trees are the largest acyclic graphs: adding an additional edge to a tree results
in a graph containing at least one cycle.

Although trees may be infinite, usually only finite trees are considered. Without
further notice we confine our attention to finite trees.

a b

c

d e

f

Figure 18: A (labeled) tree

In a connected graph, a leaf is a node with exactly one neighbor, that is, a node
the degree of which equals 1 . In Figure 18, for example, the leaves are a, c, e .

2.10 Lemma. Removal of a leaf and its (unique) associated edge from a connected graph
yields a connected graph.

Proof. Let v be a leaf in a graph, and let u,w be nodes different from v . Then,
no path connecting u and w contains v . Hence, every such path still exists in the
graph resulting from removal of v and its associated edge.
�

2.11 Lemma. Every finite, acyclic, and connected graph with at least 2 nodes contains
at least one leaf.
Proof. By contraposition: we prove that a finite, connected graph without leaves
contains at least one cycle. Let (V, ∼ ) be such a graph, with #V ≥ 2 . Because the
graph is connected every node has at least one neighbor, so deg(v)≥ 1 , for every node
v ; because the graph contains no leaves we even have deg(v)≥ 2 , for all v .

Now we construct an infinite sequence si :0≤i of nodes, as follows. Choose s0∈V
arbitrarily, and choose s1∈V , such that s0 ∼ s1 . Note that this is possible because
V is assumed to have at least 2 nodes, and because deg (s0) ≥ 2 . Next, for all
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i, 0≤i , we choose si+2∈V such that si+1 ∼ si+2 and si 6= si+2 . This is possible
because deg(si+1)≥ 2 , which follows from the assumption that the degree of every
node is at least 2 .

Thus, we have defined an infinite path s , starting at s0 and with the property
that si 6= si+2 , for all i, 0≤i . The set V of nodes, however, is finite. Therefore4,
we have sp = sq , for some p, q with 0≤ p< q . Hence, the sub-path [ sp, · · · , sq ] is a
cycle connecting sp to itself, which concludes the proof.
�

A direct corollary of this lemma is that every tree with at least 2 nodes contains at
least one leaf; after all, every tree is acyclic and connected.

2.12 Theorem. A tree with n , 1≤n , nodes contains n−1 edges.

Proof. By Mathematical Induction on n . A tree with 1 node has 0 edges – after
all, every edge connects two different nodes – , and 1−1 = 0 . Now let (V, ∼ ) be a
tree with #V = n+1 , where 1≤n . By (the corollary to) the previous lemma this
tree has a leaf u , say, so deg(u) = 1 . Hence, there is exactly one node v , say, with
u∼ v , so the one-and-only edge involving u is {u, v } . Now let (W,≈) be the graph
obtained from (V, ∼ ) by removal of leaf u and its edge {u, v } . This means that
W = V \{u} and that w ≈ x ⇔ w∼ x , for all w, x∈W .

Because v∈V we have #W = #V −1 , so #W = n . The graph (W,≈) is a
tree because removal of node u and its edge {u, v } maintains connectedness of the
remaining graph and, obviously, introduces no cycles. By Induction Hypothesis, tree
(W,≈) contains n−1 edges, hence the original tree (V, ∼ ) contains n edges.
�

Actually, (finite) trees can be characterized in many different way. This is illus-
trated by the following theorem, of which the above theorem is a special case.

2.13 Theorem. For a connected, undirected graph (V,E) the following propositions are
equivalent.

(a) (V,E) is acyclic.

(b) For every e∈E the graph (V,E\{e}) is not connected.

(c) #E = #V −1 .

(d) For all nodes u, v a unique path exists connecting u to v on which every node
occurs at most once.

2

In addition the following properties deserve to be mentioned, as they are some-
times useful. Recall that, by definition, a graph is connected if every two nodes are
connected by at least one path.

4See the discussion on finite and infinite, in the chapter on functions.
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2.14 Lemma. An undirected graph is acyclic if and only if every two nodes are connected
by at most one path.

2.15 Lemma. An undirected graph is a tree if and only if every two nodes are connected
by exactly one path.

2.16 Lemma. For every undirected graph (V,E) :

(a) (∀v : v∈V : deg(v) ≥ 2) ⇒ #E ≥ #V

(b) “ (V,E) is connected” ⇒ #E ≥ #V −1

(c) “ (V,E) is acyclic” ⇒ #E ≤ #V −1

2

Notice that the latter two propositions provide another proof that if (V,E)
is a tree then #E = #V −1 . Also, notice that the last proposition can also, by
contraposition, be formulated as:

#E ≥ #V ⇒ “ (V,E) contains a cycle” .

As a consequence, by combination with proposition (a) of this lemma, we obtain:

(∀v : v∈V : deg(v) ≥ 2) ⇒ “ (V,E) contains a cycle” .

2.9.2 Rooted trees

A rooted tree is a tree in which one node is identified separately. This designated
node is called the root of the tree. For every node in a rooted tree we can define its
distance as the length of the unique path connecting that node and the root. Thus,
for example, the root itself has distance 0 , and for every two neighboring nodes, their
distances differ by 1 . In the latter case, the node with the smaller distance is closer
to the root than the node with the larger distance. All edges in a rooted tree can
now be turned into directed arrows, either by directing them towards the root or by
directing them away from the root. The choice between these two options is rather
irrelevant but must be made; therefore, in this text we adopt the convention that all
arrows are directed away from the root. For example, Figure 16 gives the tree from
Figure 15, as a rooted tree.

As an example of an infinite rooted tree, Figure 17 shows the tree obtained with
the natural numbers as nodes, 0 as the root, and { (n , n+1) | 0≤n} as the (directed)
edges. Such a linear arrangement hardly deserves to be called a “tree”, of course, but
formally it is a tree. Usually, however, such a linear arrangement is called a “list”.

A more interesting example is obtained as follows. The nodes are the positive
naturals, the root is 1 , and, for positive m,n , the pair (n,m) is an arrow if and only
if 2 ∗n = m ∨ 2 ∗n+1 = m . (This relation can also be formulated as n = mdiv2 .)
The graph thus obtained is a rooted tree: via the arrows every positive natural number
can be obtained from 1 in a unique way. See Figure 18.
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a b

c

d e

f

Figure 19: A rooted tree, with root f

0 1 2 3 4 5 6 7 8 9

Figure 20: (Part of) the linear structure of the naturals

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

Figure 21: (Part of) the rooted, binary tree of the positive naturals
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2.10 Exercises

1. How many edges does the complete undirected n -graph have, for all n≥ 1 ?
Prove the correctness of your answer.

2. An undirected graph (V,E) is called “regular of degree d ”, for some natu-
ral number d , if deg(v) = d , for all v∈V . Prove that such a graph satisfies
d ∗ #V = 2 ∗ #E .

3. For an undirected graph in which every node has degree 3, show that the total
number of nodes is always even.

4. Let (V,E) be an undirected graph satisfying #V = 9 and #E ≥ 14 . Prove
that V contains at least one node the degree of which is at least 4 .

5. Given are two connected (undirected) graphs (V,E) and (W,F ) , such that
V ∩W = ø . Let v∈V and w∈W . Prove that the graph
(V ∪W , E∪F ∪{{v, w}} ) is connected.

6. Let (V,E) be a connected undirected graph, in which V = {v1, v2, . . . , vn}. Let
W = {w1, w2, . . . , wn}. Prove that the undirected graph (V ∪ W,E′) for E′

defined by

E′ = E ∪ {(vi, wi) | i = 1, 2, . . . , n}

is connected.

7. Let (V, ∼ ) be a connected undirected graph such that v, w∈V with the fol-
lowing properties: deg(v) and deg(w) are odd and deg(u) is even for all other
nodes u∈V . Prove that the graph contains an Euler-path connecting v and
w , that is, a path containing every edge of the graph exactly once.

8. For two connected undirected graphs (V1, E1) and (V2, E2) it is given that V1 ∩
V2 6= ∅. Prove that (V1 ∪ V2, E1 ∪ E2) is connected.

9. Give an undirected graph having a cycle of length 3 and a cycle of length 4, but
not a cycle of length 5.

10. For an undirected graph (V,E) every two non-empty subsets V1 and V2 of V
satisfy:

(V1 ∪ V2 = V )⇒ (∃v1, v2 : v1 ∈ V1 ∧ v2 ∈ V2 ∧ (v1, v2) ∈ E).

Prove that (V,E) is connected.

(Hint: for a node v consider V1 = {u ∈ V | there is a path from v to u}.)

11. Let (V,E) be an acyclic undirected graph with two distinct nodes v1, v2 ∈ V
such that for every node u ∈ V there is either a path from u to v1 or a path
from u to v2, but not both. Prove that #E = #V − 2.
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12. A chain in a directed graph (V,→ ) is an infinite sequence si : 0≤i of nodes
– that is, a function of type N→V – with the property (∀i : 0≤i : si→si+1 ) .

(a) Prove that finite and acyclic directed graphs do not contain chains.

(b) As a consequence, prove that every finite and acyclic directed graph con-
tains at least one node the out-degree of which is zero.

13. We consider a (finite) undirected graph in which the degree of every node is at
least 3 . Prove that this graph contains a cycle containing at least 4 nodes.

(Hint: construct vi for i = 0, 1, 2, 3, . . . such that vi−1 → vi and vi 6= vi−1 for i > 0 and

vi 6= vi−2 for i > 1)

14. Let (V,E) be a finite connected undirected graph. Let W be a finite set and
f : V →W a bijective function. Prove that the undirected graph

(V ∪W,E ∪ {(v, f(v)) | v ∈ V })

is connected.

15. An undirected graph contains two cycles of lengths n, m, respectively, that have
exactly one edge in common. Prove that the graph also has a cycle of length
n+m− 2.

16. For an undirected graph (V,E) every two non-empty subsets V1 and V2 of V
satisfy:

(V1 ∪ V2 = V )⇒ (∃v1, v2 : v1 ∈ V1 ∧ v2 ∈ V2 ∧ (v1, v2) ∈ E).

Prove that (V,E) is connected.

(Hint: for a node v consider V1 = {u ∈ V | there is a path from v to u}.)

17. We consider an (finite) undirected graph with n nodes, for n≥ 3 . The degree
of every node in this graph is at least 1 and the graph contains a node of degree
n−2 . Prove that this graph is connected.

18. We consider two undirected trees (V,E) and (W,F ) , with V ∩W = ø . Let
v0, v1 ∈V and w0, w1 ∈W . Prove that the graph
(V ∪W , E∪F ∪{{v0 , w0 }, {v1, w1 }} ) contains a cycle.

19. Let (V,E) be an undirected tree, and v ∈ V . Choose v′ 6∈ V and define V ′ =
V ∪ {v′} and E′ = E ∪ {{v, v′}}. Prove that (V ′, E′) is a tree.

∗ 20. We consider the complete 6 -graph in which every edge has been co loured either
red or blue. Prove that, independent of the chosen coloring, this graph contains
at least 2 monochrome triangles.

21. Prove that an undirected graph with n nodes and in which the number of edges
is greater than n2/4 contains at least one triangle.
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22. Give an example of an undirected graph containing an Euler cycle, but not
containing a Hamilton cycle.

23. Give an example of an undirected graph, with at least 4 nodes, and containing
a cycle that is both an Euler cycle and a Hamilton cycle.

24. Give an example of an undirected graph containing an Euler cycle and a Hamil-
ton cycle that are different.

25. For i = 1, 2 let (Vi, Ei) be a finite undirected graph for which (vi, v
′
i) ∈ Ei is an

edge on a Hamilton cycle of (Vi, Ei). Assume V1∩V2 = ∅. Prove that the graph

(V1 ∪ V2, E1 ∪ E2 ∪ {(v1, v2), (v′1, v
′
2)})

admits a Hamilton cycle.

26. Give an example of a Hamilton cycle in an undirected graph in which every
node has degree 3.

27. Among any group of 21 people, show that there are four people of which either
every two of them once played chess together or every two of them never played
chess together. (Hint: use Ramsey theory.)

28. Give an example of a connected, undirected graph with 6 nodes, in which the
degree of every node equals 3 . Also give an example of such a graph in which
the degree of every node equals 4 .

29. Give an example of an undirected graph with 7 nodes, in which the degree of
every node equals 2 , and consisting of exactly 2 connected components.

30. Prove that every undirected graph, with 5 nodes and in which the degree of
every node equals 2 , is connected.

31. Prove that every acyclic, undirected graph, with n nodes and n−1 edges, is
connected.

32. Prove that every undirected graph, with n nodes and at least (n2−3 ∗n+4) /2
edges, is connected.

∗ 33. Prove that every undirected graph, with n nodes and at least (n2−3 ∗n+6) /2
edges, contains a Hamilton cycle.


